

كلية هندسة الحاسوب والمعلوماتية والاتصالات

Faculty of Computer & Informatics and Communications Engineering

Logic Circuits Dr. Eng. Hassan M. Ahmad

Hassan.Ahmad@spu.edu.sy,

istamo48@mail.ru

8-1. Basic Combinational Logic Circuits

AND-OR Logic

□ In Sum-of-Products (SOP) form, basic combinational circuits can be directly implemented with AND-OR combinations if the necessary complement terms are available.

AND-OR circuit consists of two 2-input AND gates and one 2-input OR gate,

as shown in Figure-Logic diagram.

□ In general, an AND-OR circuit can have any number of AND gates each with

any number of inputs.

AND-OR

The truth table for a 4-input AND-OR logic circuit is shown.

	Inp	outs				Output	
A	В	С	D	AB	CD	x	
)	0	0	0	0	0	0	
0	0	0	1	0	0	0	
)	0	1	0	0	0	0	A AB SOP
)	0	1	1	0	1	1	SOP
)	1	0	0	0	0	0	$B \longrightarrow X = AB +$
)	1	0	1	0	0	0	
)	1	1	0	0	0	0	
)	1	1	1	0	1	1	
l	0	0	0	0	0	0	
l	0	0	1	0	0	0	
1	0	1	0	0	0	0	
1	0	1	1	0	1	1	
l	1	0	0	1	0	1	
l	1	0	1	1	0	1	
	1	1	0	1	0	1	
L	1	1	1	1	1	1	

The operation of the AND-OR circuit in Fig. is stated as follows:
 For a 4-point AND-OR logic circuit, the output X is HIGH (1) if both input A and B are HIGH (1) or both input C and D are HIGH (1).

AND-OR-Invert Logic

- ❑ When the output of an AND-OR is complemented (inverted), it results in an AND-OR Invert circuit.
- □ The logic diagram in Figure shows an AND-OR Invert circuit and development of the POS output expression.
- An example of an AOI implementation is shown. The output expression can be changed to a POS expression by applying DeMorgan's theorem twice.

AND-OR-Invert Logic

- □ In general, an AND-OR Invert circuit can have any number of AND gates each with any number of inputs.
- The operation of the AND-OR Invert circuit in Fig. is stated as follows:
 For a 4-point AND-OR Invert logic circuit, the output X is LOW (0) if
 both input A and B are HIGH (1) or both input C and D are HIGH (1).
- □ A truth table can be developed from truth table for a 4-input AND-OR logic circuit by simply changing all 1s to 0s and all 0s to 1s in the output column.

Exclusive-OR Logic

☐ The exclusive-OR gate is actually a combination of two AND gates, one OR gate, and two invertors, as shown in Figure.

• The truth table for an exclu	usive-	OR	gate is
--------------------------------	--------	----	---------

В	X
0	0
1	1
0	1
1	0
	B 0 1 0 1

- Notice that the output is HIGH whenever *A* and *B* disagree (opposite levels).
- A special exclusive OR operator ⊕ is often used, so the output expression can be stated as X = AB + AB
 X is equal to A exclusive-OR B" and can be written as X = A ⊕ B

Exclusive-NOR Logic

- The complement of exclusive-OR function is exclusive-NOR, which is derived as follows: $X = \overline{A\overline{B}} + \overline{AB} = \overline{(A\overline{B})} \overline{(\overline{A}B)} = (\overline{A} + B)(A + \overline{B}) = \overline{AB} + AB$
 - The exclusive-NOR can be implemented by simply inverting the output of an exclusive-OR, as shown in Fig. (a), or by directly implementing the expression $\overline{AB} + AB$, as show in Fig. (b).

8-2. Implementing Combinational Logic

From a Boolean Expression to a Logic Circuit

Let's examine the following Boolean expression: X = AB + CDE

- This expression is composed of two terms, *AB* and *CDE*, with a domain of five variables.
- The first term is formed by ANDing *A* with *B*, and the second term is formed by ANDing *C*, *D* and *E*.

10

 $X = AB(C\overline{D} + EF)$

Implement the corresponding logic circuit.

Example 8-1

The structure that indicated in relation to the expression is as follows:

 $X = AB(C\overline{D} + EF)$ AND

Before we can implement the final expression, we must create the sum term $C\overline{D} + EF$; but before we can get this term, we must create the product terms $C\overline{D}$ and EF; but before we can get the term $C\overline{D}$, we must create \overline{D} . So, as we can see, the logic operations must be done in the proper order.

The logic gates required to implement $X = AB(C\overline{D} + EF)$ are as follows:

- **1.** One invertor to form D.
- **2.** Two 2-input AND gates to form $C\overline{D}$ and EF.
- **3.** One 2-input OR gate to form $C\overline{D} + EF$.
- 4. One 3-input AND gate to form *X*.

From a Truth Table to a Logic Circuit

Let the following table specifies a logic function.

- The Boolean SOP expression obtained from the truth table ORing the product terms for which X = 1 is: $X = \overline{ABC} + A\overline{BC}$
- The first term in the expression is formed by ANDing the three variables \overline{A} , *B*, and *C*

• The second term is formed by ANDing the three variables A, B, and C

□ The logic gates required to implement this expression are as follows:

- **Three** invertors to form \overline{A} , \overline{B} , and \overline{C} variables;
- **Two 3-inputs AND** gates to form terms *ABC* and *ABC*
- **One** 2-input OR gate to form the final output function, ABC + ABC
- **The implementation of logic function** $X = \overrightarrow{ABC} + \overrightarrow{ABC}$ is illustrated in Fig.

 $X = ABC + A\overline{B}\overline{C}$

14

Example 8-2 Design a logic circuit to implement the operation specified in

following given truth table. **Solution**

Notice that X = 1 for only three of the input conditions. Therefore, the logic expression is $X = \overline{ABC} + \overline{ABC} + \overline{ABC}$

The logic gates required are three inverters, three 3-input AND gates and one 3-input OR gate. The logic circuit is shown in Fig. C = B = A

Example 8-3Develop a logic circuit with four input variables that will only
produce a 1 output when exactly three input variables are 1s.**Solution** $A \quad B \quad C \quad D$ Product Term

The combinations in which there are exactly three 1s are listed in Table. The product terms are Ored to get the following expression:

 $X = \overline{A}BCD + A\overline{B}CD + AB\overline{C}D + ABC\overline{D}$

This expression is implemented in Fig. with AND-OR logic.

Reduce the combinational logic circuit in Fig. to a minimum

form.

Solution

The expression for the output of the circuit is:

$$X = \left(\overline{\overline{A}\,\overline{B}\,\overline{C}}\right)C + \overline{\overline{A}\,\overline{B}\,\overline{C}} + D$$

Applying DeMorgan's theorem and Boolean algebra,

$$X = (\overline{A} + \overline{B} + \overline{C})C + \overline{A} + \overline{B} + \overline{C} + D \quad (rul_9)$$

$$= AC + BC + CC + A + B + C + D \quad (rul_7)$$

$$= AC + BC + C + A + B + C + D \quad (rul_5)$$

$$= C(A + B + 1) + A + B + D \quad (rul_2)$$

$$= C(A + 1) + A + B + D \quad (rul_2)$$

$$= A + B + C + D \quad (rul_9)$$

Basic rules of Boolean algebra.

1. $A + 0 = A$	7. $A \cdot A = A$
2. $A + 1 = 1$	8. $A \cdot \overline{A} = 0$
3. $A \cdot 0 = 0$	9. $\overline{\overline{A}} = A$
4. $A \cdot 1 = A$	10. $A + AB = A$
5. $A + A = A$	11. $A + \overline{A}B = A + B$
6. $A + \overline{A} = 1$	12. $(A + B)(A + C) = A + BC$

A, B, or C can represent a single variable or a combination of variables.

The simplified circuit is a 4-input OR gate as shown in Fig.

8-3. Pulse Waveform Operation

- The operation of any gate is the same regardless (بغض النظر) of whether its inputs are pulsed or constant levels.
- The nature of the inputs (pulsed or constant levels) does not alter (یغیر) the truth table of a circuit.
- □ The following is a review of the operation of individual gates for use in analyzing combinational circuits with pulse waveform inputs:
 - 1. The output of an AND gate is HIGH only when all inputs are HIGH at the same time.
 - 2. The output of an OR gate is HIGH only when at least one of its inputs is HIGH.
 - 3. The output of a NAND gate is LOW only when all inputs are HIGH at the same time.
 - 4. The output of a NOR gate is LOW only when at least one of its inputs is HIGH.

Example 8-5 Determine the final output waveform X for the circuit in following Fig., with input waveforms A, B, and C as shown.

Solution

- ✓ The output expression, AB + AC, indicates that the output X is LOW when:
 - both A and B are HIGH or
 - both A and C are HIGH or
 - all inputs are HIGH.
- ✓ The output waveform X is shown in the timing diagram of given Fig.
- \checkmark The intermediate waveform Y at the output of the OR gate is also shown.

Example 8-6 Draw the timing diagram for the circuit in following Fig. showing the outputs of G_1 , G_2 , and G_3 with the input waveforms, A, and B, as indicated.

Solution

When both inputs are HIGH or when both inputs are LOW, the output *X* is HIGH as shown in following Fig.

Notice that this is an exclusive-NOR circuit. The intermediate outputs of gates G_2 , and G_3 are also shown in Fig.

Selected Key Terms

Universal gate	Either a NAND or a NOR gate. The term universal refers to a property of a gate that permits any logic function to be implemented by that gate or by a combination of gates of that kind.
Negative-OR	The dual operation of a NAND gate when the inputs are active-LOW.
Negative-AND	The dual operation of a NOR gate when the inputs are active-LOW.
Node	A common connection point in a circuit in which a gate output is connected to one or more gate inputs.
	gate inputs.

True/False Quiz

- 1. AND-OR logic can have only two 2-input AND gates.
- 2. AOI is an acronym for AND-OR-Invert.
- 3. If the inputs of an exclusive-OR gate are the same, the output is LOW (0).
- 4. If the inputs of an exclusive-NOR gate are different, the output is HIGH (1).
- 5. A parity generator cannot be implemented using exclusive-OR gates.
- 6. NAND gates can be used to produce the AND functions.
- 7. NOR gates cannot be used to produce the OR functions.
- 8. Any SOP expression can be implemented using only NAND gates.
- 9. Negative-OR is equivalent to NAND.

SELF-TEST

1. Assume an AOI expression is AB + CD. The equivalent POS expression is

a. (A + B)(C + D)b. $(\overline{A} + \overline{B})(\overline{C} + \overline{D})$ c. $(\overline{A + B})(\overline{C + D})$

d. none of the above

2. The truth table shown is for

a. a NAND gate b. a NOR gate

c. an exclusive-OR gate

d. an exclusive-NOR gate

Inp	outs	Output	١
Α	В	X	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

3. To implement the SOP expression $X = \overline{ABC} + \overline{ABD} + \overline{BDE}$, 4. Reading the Karnaugh map, the logic expression is the type of gate that is needed is a

- a. 3-input AND gate
- b. 3-input NAND gate
- c. 3-input OR gate
- d. 3-input NOR gate

- b. OR gates
- c. NAND gates
- d. NOR gates

7. The circuit shown is equivalent to an

- a. AND gate
- b. XOR gate
- c. OR gate
- d. none of the above

6. The two types of gates which are called *universal gates*

a. AND/OR

are

- b. NAND/NOR
- c. AND/NAND
- d. OR/NOR
- 8. The circuit shown is equivalent to
 - a. an AND gate
 - b. an XOR gate
 - c. an OR gate
 - d. none of the above

P100.5-4 Use AND gates, OR gates, and inverters as needed to implement the following logic expressions as stated

30

Prop. 5-5 Use NAND gates, NOR gates, or combinations of both to implement the following logic expressions as stated:

Prob. 5-6 Implement the logic circuits in Figure using only NAND gates, and also using only NOR gates.

Determine the output waveform X for the circuit in Fig., directly from the

output expression.

Sol.

Prob. 5-7

• The output expression for the circuit is developed in following Fig.

Result: The SOP form indicates that the output is HIGH when A is LOW and C is HIGH or when B is LOW and C is HIGH or when C is LOW and D is HIGH, regardless (النظر) of values of another variables in each state.

• The result is shown in following Fig. and is the same as the one obtained by the intermediate-waveform method in Example 8-7.

A

В

С

 $X = \overline{AC} + \overline{BC} + \overline{CD}$

Each state is may be repeated.

BC

 $\overline{C}D$

